The planet KELT 9b is so hot — hotter than many stars — that it shatters gas giant temperature records, researchers report online June 5 in Nature.
This Jupiter-like exoplanet revolves around a star just 650 light-years away, locked in an orbit that keeps one side always facing its star. With blistering temps hovering at about 4,300o Celsius, the atmosphere on KELT 9b’s dayside is over 700 degrees hotter than the previous record-holder — and hot enough that atoms cannot bind together to form molecules. “It’s like a star-planet hybrid,” says Drake Deming, a planetary scientist at the University of Maryland in College Park who was not involved in the research. “A kind of object we’ve never seen before.”
KELT 9b also boasts an unusual orbit, travelling around the poles of its star, rather than the equator, once every 36 hours. And radiation from KELT 9b’s host star is so intense that it blows the planet’s atmosphere out like a comet tail — and may eventually strip it away completely.
The planet is so bizarre that it took scientists nearly three years to convince themselves it was real, says Scott Gaudi of Ohio State University. Deming suspects KELT 9b is “the tip of the iceberg” for an undiscovered population of scalding-hot gas giants.
Children of Nso farmers in Cameroon know how to master the marshmallow test, which has tempted away the self-control of Western kids for decades.
In a direct comparison on this delayed gratification task, Cameroonian youngsters leave middle-class German children in the dust when challenged to resist a reachable treat while waiting for another goodie, a new study finds.
Of 76 Nso 4-year-olds, 53, or nearly 70 percent, waited 10 minutes for a second treat — a small local pastry called a puff-puff — without eating the puff-puff placed on a table in front of them, say psychologist Bettina Lamm of Osnabrück University in Germany and colleagues. Only 35 of 125 German 4-year-olds, or 28 percent, successfully waited for their choice of a second lollipop or chocolate bar.
The study, which is the first to administer the marshmallow test to non-Western kids, shows that cultural styles of child raising can dramatically shift how self-control develops, Lamm’s team contends online June 6 in Child Development.
“The disparity between German and Nso cultures on the marshmallow test is huge,” says psychologist Ozlem Ayduk of the University of California, Berkeley. She concurs that parenting practices among Nso farmers may at least partly boost children’s ability to delay gratification.
Marshmallow tests conducted over the past 50 years have found that, as in the new study, a minority of children in Western countries manage to wait for a second treat without munching the first one (SN: 11/15/14, p. 28). And kids best able to wait out the test display academic and social advantages decades later (SN: 10/8/11, p. 12).
A Western cultural emphasis on raising children to be independent and to express what they want and how they feel presents challenges to self-control, Lamm says. Delaying a reward, as in the marshmallow test, stirs a frustrating feeling of powerlessness, her team proposes. The kids in the new study were part of a long-term study of cultural differences in memory and learning. Age-appropriate assessments occurred three times during the kids’ first year of life and at ages 3 and 4. Only 4-year-olds took the marshmallow test. Among 63 of the German youngsters videotaped in play sessions with their mothers at age 9 months, those whose mothers were most lenient in letting them determine what to do displayed the least patience on the marshmallow test at age 4, the researchers say.
Researchers have long argued that “authoritative parenting,” marked by giving children freedom within specific limits, fosters self-control needed for academic and social success (SN: 8/19/89, p. 117). German kids who waited for a second treat had mothers who dealt with them authoritatively as 9-month-olds, Lamm says.
Nso mothers typically had an authoritative parenting style, keeping their kids close and training them to keep emotions in check and respect their elders, especially those high in a community’s pecking order. For 57 Nso kids recorded in play with their mothers at age 9 months, mothers consistently took the lead in organizing play activities.
Nso children’s self-control grew out of their mothers’ authoritarian, controlling parenting style, Lamm suspects.
Children also displayed cultural differences in how they tried to resist temptation during the marshmallow test. German kids tried to distract themselves while waiting for a second treat by moving about, turning around, singing, talking and even leaving the room. Nso youngsters waiting for a second treat exhibited little emotion and remained largely still. Eight of them fell asleep in their chairs.
Some previously tested Western children have rested their heads on the table and taken naps as a tactic to ignore available treats. But Nso kids appeared to zonk out spontaneously, slumping over in their chairs, Lamm says.
As a result of authoritarian parenting practices, Nso kids either squelch negative emotions or experience negative emotions in a different, more controllable way than Western peers do, she proposes.
Ayduk notes that it’s not clear whether Nso youngsters truly had greater self-control or if, true to farming community standards, they simply obeyed adults who asked them to wait for a second puff-puff, Ayduk adds.
While Nso values and parenting techniques generally characterize small-scale farming populations, especially in Africa, hunter-gatherers are another story, says anthropologist Barry Hewlett of Washington State University in Vancouver. Traditional hunter-gatherer groups value individual freedom and consider everyone to be relatively equal, regardless of age. Parents usually don’t tell their kids what to do, and children show little deference to parents and elders.
No hunter-gatherer kids have taken the marshmallow test. Hewlett expects most would scarf an available treat right away.
A 13-million-year-old infant’s skull, discovered in Africa in 2014, comes from a new species of ape that may not be far removed from the common ancestor of living apes and humans.
The tiny find, about the size of a lemon, is one of the most complete skulls known of any extinct ape that inhabited Africa, Asia or Europe between 25 million and 5 million years ago, researchers report in the Aug. 10 Nature. The fossil provides the most detailed look to date at a member of a line of African primates that are now candidates for central players in the evolution of present-day apes and humans. Most fossils from more than 40 known extinct ape species amount to no more than jaw fragments or a few isolated teeth. A local fossil hunter spotted the nearly complete skull in rock layers located near Kenya’s Lake Turkana. Members of a team led by paleoanthropologist Isaiah Nengo estimated the fossil’s age by assessing radioactive forms of the element argon in surrounding rock, which decay at a known rate.
Comparisons with other African ape fossils indicate that the infant’s skull belongs to a new species that the researchers named Nyanzapithecus alesi. Other species in this genus, previously known mainly from jaws and teeth, date to as early as around 25 million years ago.
“This skull comes from an ancient group of apes that existed in Africa for over 10 million years and was close to the evolutionary origin of living apes and humans,” says Nengo, of Stony Brook University in New York and De Anza College in Cupertino, Calif.
He and colleagues looked inside the skull using a powerful type of 3-D X-ray imaging. This technique revealed microscopic enamel layers that had formed daily from birth in developing adult teeth that had yet to erupt. A count of those layers indicates that the ape was 16 months old when it died.
Based on a presumably rapid growth rate, the scientists calculated that the ancient ape would have weighed about 11.3 kilograms as an adult. Its adult brain volume would have been almost three times larger than that of known African monkeys from the same time, the researchers estimate. N. alesi’s tiny mouth and nose, along with several other facial characteristics, make it look much like small-bodied apes called gibbons. Faces resembling gibbons evolved independently in several extinct monkeys, apes and their relatives, the researchers say. The same probably held for N. alesi, making it an unlikely direct ancestor of living gibbons, they conclude. No lower-body bones turned up with the new find. Even so, it’s possible to tell that N. alesi did not behave as present-day gibbons do. In gibbons, a part of the inner ear called the semicircular canals, which coordinates balance, is large relative to body size. That allows the apes to swing acrobatically from one tree branch to another. N. alesi’s small semicircular canals indicate that it moved cautiously in trees, Nengo says.
Several of the infant skull’s features, including those downsized semicircular canals, connect it to a poorly understood, 7-million- to 8-million-year-old ape called Oreopithecus. Fossils of that primate, discovered in Italy, suggest it walked upright with a slow, shuffling gait. If an evolutionary relationship existed with the older N. alesi, the first members of the Oreopithecus genus probably originated in Africa, Nengo proposes.
Without any lower-body bones for N. alesi, it’s too early to rule out the possibility that Nyanzapithecus gave rise to modern gibbons and perhaps Oreopithecus as well, says paleontologist David Alba of the Catalan Institute of Paleontology Miquel Crusafont in Barcelona. Gibbon ancestors are thought to have diverged from precursors of living great apes and humans between 20 million and 15 million years ago, Alba says.
Despite the age and unprecedented completeness of the new ape skull, no reported tooth or skull features clearly place N. alesi close to the origins of living apes and humans, says paleoanthropologist David Begun of the University of Toronto.
Further studies of casts of the inner braincase, which show impressions from surface features of the brain, may help clarify N. alesi’s position in ape evolution, Nengo says. Insights are also expected from back, forearm and finger fossils of two or three ancient apes, possibly also from N. alesi, found near the skull site in 2015. Those specimens also date to around 13 million years ago.
On the morning of August 21, a pair of jets will take off from NASA’s Johnson Space Center in Houston to chase the shadow of the moon. They will climb to 15 kilometers in the stratosphere and fly in the path of the total solar eclipse over Missouri, Illinois and Tennessee at 750 kilometers per hour.
But some of the instruments the jets carry won’t be looking at the sun, or even at Earth. They’ll be focused on a different celestial body: Mercury. In the handful of minutes that the planes zip along in darkness, the instruments could collect enough data to answer this Mercury mystery: What is the innermost planet’s surface made of? Because it’s so close to the sun, Mercury is tough to study from Earth. It’s difficult to observe close up, too. Extreme heat and radiation threaten to fry any spacecraft that gets too close. And the sun’s brightness can swamp a hardy spacecraft’s efforts to send signals back to Earth.
NASA’s Messenger spacecraft orbited Mercury from 2011 to 2015 and revealed a battered, scarred landscape made of different material than the rest of the terrestrial planets (SN: 11/19/11, p. 17). But Messenger only scratched the surface, so to speak. It analyzed the planet’s composition with an instrument called a reflectance spectrometer, which collects light and then splits that light into its component wavelengths to figure out which elements the light was reflected from. Messenger took measurements of reflected light from Mercury’s surface at wavelengths shorter than 1 micrometer, which revealed, among other things, that Mercury contains a surprising amount of sulfur and potassium (SN: 7/16/11, p. 12). Those wavelengths come only from the top few micrometers of Mercury. What lies below is still unknown.
To dig a few centimeters deeper into Mercury’s surface, solar physicist Amir Caspi and planetary scientist Constantine Tsang of the Southwest Research Institute in Boulder, Colo., and colleagues will use an infrared camera, specially built by Alabama-based Southern Research, that detects wavelengths between 3 and 5 micrometers.
Copies of the instrument will fly on the two NASA WB-57 research jets, whose altitude and speed will give the observers two advantages: less atmospheric interference and more time in the path of the eclipse. Chasing the moon’s shadow will let the planes stay in totality — the region where the sun’s bright disk is completely blocked by the moon — for a combined 400 seconds (6.67 minutes). That’s nearly three times longer than they would get by staying in one spot. Mercury’s dayside surface is 425° Celsius, and it actually emits light at 4.1 micrometers — right in the middle of the range of Caspi’s instrument. As any given spot on Mercury rotates away from the sun, its temperature drops as low as ‒179° C. Measuring how quickly the planet loses heat can help researchers figure out what the subsurface material is made of and how densely it’s packed. Looser sand will give up its heat more readily, while more close-packed rock will hold heat in longer.
“This is something that has never been done before,” Caspi says. “We’re going to try to make the first thermal image heat map of the surface of Mercury.”
Unfortunately for Caspi, only two people can fly on the jet: The pilot and someone to run the instrument. Caspi will remain on the ground in Houston, out of the path of totality. “So I will get to watch the eclipse on TV,” Caspi says.
Every few years, for a handful of minutes or so, science shines while the sun goes dark.
A total eclipse of the sun is, for those who witness it, something like a religious experience. For those who understand it, it is symbolic of science’s triumph over mythology as a way to understand the heavens.
In ancient Greece, the pioneer philosophers realized that eclipses illustrate how fantastic phenomena do not require phantasmagoric explanation. An eclipse was not magic or illusion; it happened naturally when one celestial body got in the way of another one. In the fourth century B.C., Aristotle argued that lunar eclipses provided strong evidence that the Earth was itself a sphere (not flat as some primitive philosophers had believed). As the eclipsed moon darkened, the edge of the advancing shadow was a curved line, demonstrating the curvature of the Earth’s surface intervening between the moon and sun.
Oft-repeated legend proclaims that the first famous Greek natural philosopher, Thales of Miletus, even predicted a solar eclipse that occurred in Turkey in 585 B.C. But the only account of that prediction comes from the historian Herodotus, writing more than a century later. He claimed that during a fierce battle “day suddenly became night,” just as Thales had forecast would happen sometime during that year.
There was an eclipse in 585 B.C., but it’s unlikely that Thales could have predicted it. He might have known that the moon blocks the sun in an eclipse. But no mathematical methods then available would have allowed him to say when — except, perhaps, a lucky coincidence based on the possibility that solar eclipses occurred at some regular cycle after lunar eclipses. Yet even that seems unlikely, a new analysis posted online last month finds.
“Some scholars … have flatly denied the prediction, while others have struggled to find a numerical cycle by means of which the prediction could have been carried out,” writes astronomer Miguel Querejeta. Many such cycles have already been ruled out, he notes. And his assessment of two other cycles concludes “that none of those conjectures can be regarded as serious explanations of the problematic prediction of Thales: in addition to requiring the existence of long and precise eclipse records … both cycles that have been examined overlook a number of eclipses which match the visibility criteria and, consequently, the patterns suggested seem to disappear.”
It’s true that the ancient Babylonians worked out methods for predicting lunar eclipses based on patterns in the intervals between them. And the famous Greek Antikythera mechanism from the second century B.C. seems to have used such cycle data to predict some eclipses.
Ancient Greek astronomers, such as Hipparchus (c. 190–120 B.C.), studied eclipses and the geometrical relationships of the Earth, moon and sun that made them possible. Understanding those relationships well enough to make reasonably accurate predictions became possible, though, only with the elaborate mathematical description of the cosmos developed (drawing on Hipparchus’ work) by Claudius Ptolemy. In the second century A.D., he worked out the math for explaining the movements of heavenly bodies, assuming the Earth sat motionless in the center of the universe.
His system specified the basic requirements for a solar eclipse: It must be the time of the new moon — when moon and sun are on the same side of the Earth — and the positions of their orbits must also be crossing the ecliptic, the plane of the sun’s apparent orbital path through the sky. (The moon orbits the Earth at a slight angle, crossing the plane of the ecliptic twice a month.) Only precise calculations of the movements of the sun and moon in their orbits could make it possible to predict the dates for eclipsing alignments.
Predicting when an eclipse will occur is not quite the same as forecasting exactly where it will occur. To be accurate, eclipse predictions need to take subtle gravitational interactions into account. Maps showing precisely accurate paths of totality (such as for the Great American Eclipse of 2017) became possible only with Isaac Newton’s 17th century law of gravity (and the further development of mathematical tools to exploit it). Nevertheless Ptolemy had developed a system that, in principle, showed how to anticipate when eclipses would happen. Curiously, though, this success was based on a seriously wrong blueprint for the architecture of the cosmos.
As Copernicus persuasively demonstrated in the 16th century, the Earth orbits the sun, not vice versa. Ptolemy’s geometry may have been sound, but his physics was backwards. While demonstrating that mathematics is essential to describing nature and predicting physical phenomena, he inadvertently showed that math can be successful without being right.
It’s wrong to blame him for that, though. In ancient times math and science were separate enterprises (science was then “natural philosophy”). Astronomy was regarded as math, not philosophy. An astronomer’s goal was to “save the phenomena” — to describe nature correctly with math that corresponded with observations, but not to seek the underlying physical causes of those observations. Ptolemy’s mathematical treatise, the Almagest, was about math, not physics.
One of the great accomplishments of Copernicus was to merge the math with the physical realty of his system. He argued that the sun occupied the center of the cosmos, and that the Earth was a planet, like the others previously supposed to have orbited the Earth. Copernicus worked out the math for a sun-centered planetary system. It was a simpler system than Ptolemy’s. And it was just as good for predicting eclipses.
As it turned out, though, even Copernicus didn’t have it quite right. He insisted that planetary orbits were circular (modified by secondary circles, the epicycles). In fact, the orbits are ellipses. It’s a recurring story in science that mathematically successful theories sometimes are just approximately correct because they are based on faulty understanding of the underlying physics. Even Newton’s law of gravity turned out to be just a good mathematical explanation; the absolute space and invariable flow of time he believed in just aren’t an accurate representation of the universe we live in. It took Einstein to see that and develop the view of gravity as the curvature of spacetime induced by the presence of mass. Of course, proving Einstein right required the careful measurement by Arthur Eddington and colleagues of starlight bending near the sun during a solar eclipse in 1919. It’s a good thing they knew when and where to go to see it.
Discovering an itchy welt is often a sign you have been duped by one of Earth’s sneakiest creatures — the mosquito.
Scientists have puzzled over how the insects, often laden with two or three times their weight in blood, manage to flee undetected. At least one species of mosquito — Anopheles coluzzii — does so by relying more on lift from its wings than push from its legs to generate the force needed to take off from a host’s skin, researchers report October 18 in the Journal of Experimental Biology. The mosquitoes’ undetectable departure, which lets them avoid being smacked by an annoyed host, may be part of the reason A. coluzzii so effectively spreads malaria, a parasitic disease that kills hundreds of thousands of people each year.
Researchers knew that mosquito flight is unlike that of other flies (SN Online: 3/29/17). The new study provides “fascinating insight into life immediately after the bite, as the bloodsuckers make their escape,” says Richard Bomphrey, a biomechanist at the Royal Veterinary College of the University of London, who was not involved in the research.
To capture mosquito departures, Sofia Chang of the Animal Flight Laboratory at the University of California, Berkeley and her colleagues set up a flight arena for mosquitoes. Using three high-speed video cameras, the researchers created computer reconstructions of the mosquitoes’ takeoff mechanisms to compare with those of fruit flies.
Mosquitoes are as fast as fruit flies while flying away but use only about a quarter of the leg force that fruit flies typically use to push off, Chang and her colleagues found. And 61 percent of a mosquito’s takeoff power comes from its wings. As a result, the mosquitoes do not generate enough force on a mammal’s skin to be detected.
Unlike fruit flies’ short legs, mosquitoes’ long legs extend the insects’ push-off time. That lets mosquitoes spread out already-minimal leg force over a longer time frame to reach similar takeoff speeds as fruit flies, the researchers found. This slow and steady mechanism is the same regardless of whether the bloodsuckers sense danger or are leaving of their own accord, and whether they are full of blood or have yet to get a meal. While in flight, though, a belly full of blood slowed the mosquitoes down by about 18 percent.
Chang next wants to determine whether mosquitoes land as gently as they depart. “If they are so stealthy when they leave, they must be stealthy as they land, too.”
Saplings grown in soil microbes that have experienced drought, cold or heat are more likely to survive when faced with those same conditions, researchers report in the May 26 Science. And follow-up tests suggest that the microbes’ protective relationship with trees may linger beyond initial planting.
The team’s findings could aid massive tree planting efforts by giving new saplings the best chance of survival over the long run, says Ian Sanders, a plant and fungal ecologist at the University of Lausanne in Switzerland. “If you can control which microbes are put onto tree saplings in a nursery, you can probably help to determine whether they’re going to survive or not when they’re transplanted to the field.” As climate change pushes global temperatures ever higher, many species must either adapt to new conditions or follow their ideal climate to new places (SN: 1/25/23). While forests’ ranges have changed as Earth’s climate has warmed and cooled over hundreds of millions of years, the pace of current climate change is too fast for trees to keep up (SN: 4/1/20).
Trees live a long time, and they don’t move or evolve very quickly, says Richard Lankau, a forest ecologist at the University of Wisconsin–Madison. They do have close relationships with fast-adapting soil microbes, including fungi, which can help plants survive stressful conditions.
But it was unclear whether microbes that had previously survived various climates and stresses might give inexperienced baby trees encountering a changing climate a leg up. With friends in the soil, “trees might have more tools in their toolkit than we give them credit for” to survive tough conditions, Lankau says.
For the study, Lankau and fellow ecologists Cassandra Allsup and Isabelle George — both also at UW–Madison — collected soil from 12 spots in Wisconsin and Illinois that varied in temperature and amount of rain. The team then used the soils to plant an abundance of 12 native tree species, including white oak (Quercus alba) and silver maple (Acer saccharinum). Overall, “we had thousands of plants we were monitoring,” Allsup says.
Those saplings grew in the soils in a greenhouse for two months before being transplanted in one of two field sites — one warm and one cold. To simulate drought, some trees in each spot were placed under transparent plastic sheets that blocked direct rainfall.
One site in northern Wisconsin was at the northern edge of the trees’ range and represented how trees might take root in a new area that’s getting warm enough for them to grow. There, trees planted in soil containing cold-adapted microbes better survived Wisconsin’s frigid winter temperatures. Plants that faced drought in addition to the cold, on the other hand, didn’t have the same benefit.
The other location, set up in central Illinois, was designed to represent a region where the climate is getting too hot or dry for the tree species to tolerate. Saplings grown in soil with microbes from arid spots were more likely to survive a lack of rain. But those grown in soils with heat-tolerant microbes were only slightly more likely to survive when they received normal rainfall. Resident species already living in the area didn’t outcompete all of the transplanted microbes. Newly introduced fungi persisted in the soil for three years, a sign that any protective effects might last at least that long, the team found.
It’s still unclear which microbes best aid the trees. Analyses of microbes living in the soil hinted that fungi that live inside plant roots may better help trees survive drought. Cold-adapted soils seem to have fewer fungal species. But soils also contain bacteria, archaea and protists, Sanders says. “We don’t know what it is yet that seems to affect the plant survival in these changing climates.” Determining which microbes are the important ones and whether there are specific conditions that best suit the soil is next up on the list, Allsup says. For example, can dry-adapted soil from Iowa help when planting trees in Illinois? “We need to think more about soils and combinations and [transplant] success… to actually save the forest.”
One caution, Sanders says, is that transporting microbes from one place to another en masse could bring the bad along with the good. Some microbes might be pathogens in the new place where they’re transplanted. “That’s also a big danger.”